Feasibility of Using Ultrasonography to Establish Relationships Among Sacral Base Position, Sacral Sulcus Depth, Body Mass Index, and Sex

Michael D. Lockwood, DO
Tatyana Kondrashova, MD, PhD
Jane C. Johnson, MA

Context: Identifying relationships among anatomical structures is key in diagnosing somatic dysfunction. Ultrasonography can be used to visualize anatomical structures, identify sacroiliac landmarks, and validate anatomical findings and measurements in relation to somatic dysfunction. As part of the osteopathic manipulative medicine course at A.T. Still University–Kirkville College of Osteopathic Medicine, first-year students are trained to use ultrasonography to establish relationships among musculo-skeletal structures.

Objectives: To determine the ability of first-year osteopathic medical students to establish sacral base position (SBP) and sacral sulcus depth (SSD) using ultrasonography and to identify the relationship of SBP and SSD to body mass index (BMI) and sex.

Methods: Students used ultrasonography to obtain the distance between the skin and the sacral base (the SBP) and the distance between the skin and the tip of the posterior superior iliac spine bilaterally. Next, students calculated the SSD (the distance between the tip of the posterior superior iliac spine and the SBP). Data were analyzed with respect to side of the body, BMI, sex, and age. The BMI data were subdivided into normal (18-25 mg/kg) and overweight (25-30 mg/kg) groups.

Results: Ultrasound images of 211 students were included in the study. The SBP was not significantly different between the left and right sides (36.5 mm vs 36.5 mm; \(P = .95 \)) but was significantly different between normal and overweight BMI categories (33.0 mm vs 40.0 mm; \(P < .001 \)) and between men and women (34.1 mm vs 39.0 mm; \(P < .001 \)). The SSD was not significantly different between left and right sides (18.9 mm vs 19.8 mm; \(P = .08 \)), normal and overweight BMI categories (18.9 mm vs 19.7 mm, \(P = .21 \)), or men and women (19.7 mm vs 19.0 mm; \(P = .24 \)). No significant relationship was identified between age and SBP (\(P = .46 \)) or SSD (\(P = .39 \)); however, the age range was narrow (21-33 years).

Conclusion: The study yielded repeatable and reproducible results when establishing SBP and SSD using ultrasonography. The statistically significant relationship between SBP and higher BMI and between SBP and female sex may point to more soft tissue overlaying the sacrum in these groups. Further research is needed on the use of ultrasonography to establish criteria for somatic dysfunction.

doi:10.7556/jaoa.2015.135
Low back pain and pain involving the posterior iliac joint are common problems that most people experience at some point in their life, with the highest incidence in the third decade, although the overall prevalence increases with age. A study evaluating sacroiliac joint abnormalities in a patient population with primarily low back pain found that 31.7% of patients showed sacroiliac joint abnormalities. Despite being identified as a source of low back and lower extremity pain, sacroiliac joint pain is frequently misdiagnosed.

Currently, no definitive physical, radiologic, or patient history findings exist that can be used to diagnose sacroiliac joint pain. In one study, the lumbar spine and pelvis were clinically assessed to understand the bony pelvic anatomical landmark asymmetry in the lumbar-pelvic region. Another study showed that accurate identification of lumbar spinous processes using multiple landmarks was dependent on examiner experience, the presence of anatomical anomalies, and participant characteristics, such as the presence of a 12th rib, body mass index (BMI), and sex. Understanding pelvic anatomical landmarks is also important in osteopathic medical education. Concepts of asymmetry in the lumbar spine and pelvis are often taught as basic facts, with little discussion of validity or reliability, but growing evidence suggests that some of these concepts are invalid or incompletely understood.

Ultrasound imaging is becoming more widely used by physicians for procedural guidance, diagnostic assessment, and screening. One study compared clinical and radiologic evaluation of the sacroiliac joint with ultrasonography in patients with a recent diagnosis of spondyloarthritis. The authors found that ultrasound imaging was a promising method to study the articular and soft tissues of the sacroiliac joint, independent of clinical and radiographic examination. Ultrasonography has also been used successfully to assess the posterior ligaments of the sacroiliac joint, which have been identified as a potential source of nonspecific low back pain or peripartum pelvic pain. Findings from these studies document the sonographic appearance, length, and thickness of the long posterior sacroiliac ligament, which could provide useful normative data for its pathology, particularly in patients with pregnancy-related pelvic girdle pain.

Studies have demonstrated the effectiveness of incorporating ultrasonography in the medical school classroom. Second-year medical students improved their accuracy of measuring internal organs using ultrasonography. Other studies have demonstrated that ultrasonography is a skill that first-year medical students can master with appropriate training. The incorporation of ultrasound in first-year osteopathic manipulative medicine courses has been suggested to increase students’ confidence in palpatory skills in relation to somatic dysfunction and to give students a clinically advantageous skillset in image acquisition and interpretation.

Asymmetry of body landmarks is one of the features of somatic dysfunction. In a study by Shaw et al, differences in asymmetry of the lumbar spine transverse processes were measured using musculoskeletal ultrasound imaging before and after osteopathic manipulative treatment. To date, minimal osteopathic medical research has been conducted on imaging methods to assess the relationship among body landmarks.

With the increasing need for an evidence base in the medical professions, the objective understanding of palpatory assessment methods is especially important for future osteopathic physicians. Ultrasoundography can be used to visualize anatomical structures, identify sacroiliac landmarks, and validate anatomical findings and measurements in relation to somatic dysfunction. The purpose of the current study was to determine the ability of first-year osteopathic medical students to establish sacral base position (SBP) and sacral sulcus depth (SSD) using ultrasonography and to identify the relationships that SBP and SSD have with BMI and sex. We hypothesized that students would acquire repeatable and reproducible results when measuring SBP and SSD using ultrasonography and that these values could be used to infer relationships that SBP and SSD have with BMI and sex.
Methods
The local institutional review board granted exempt status for the current study. Data were collected at the A.T. Still University–Kirkville College of Osteopathic Medicine in Missouri during academic years 2012-2013 and 2013-2014 on first-year osteopathic medical students’ ultrasonography performance. All students participated, but those older than 33 years or with a BMI greater than 30 were excluded from the data analysis because insufficient numbers in these student populations were available to generate any meaningful conclusions or trends. The group was not randomly selected, and it represented well-functioning adults in the given age range.

Ultrasonography Assignment
The osteopathic manipulative medicine course required for first- and second-year students integrates ultrasonography assignments in which students investigate anatomical landmarks. In the current study, the assignment required students to obtain ultrasound images from each other, identify target structures, and acquire images, which they saved on an external memory card during the allotted scanning time (30 minutes per student). The assignment was preceded by a live demonstration of the scanning technique and a PowerPoint (Microsoft) presentation that explained the objectives and clinical relevance of the exercise. Students were given written instructions, and additional instruction was provided during the allotted scanning time. Each student was then required to submit his or her images electronically through a learning management system.

Students used portable ultrasonography machines with curvilinear C5-2s probes on a musculoskeletal sacral preset with a working frequency of 5 MHz. The gain and depth were adjusted individually.

Students were instructed to locate the spinous process of L5 and identify the posterior superior iliac spine (PSIS) directly lateral to the spinous process of L5. They then measured the SBP (the distances between the skin and the sacral base) and the distances between the skin and the tip of the PSIS. Next, students calculated the SSD (the distance between the tip of the PSIS and the SBP) (Figure). In other words, SSD = (distance from the skin to the PSIS) – (SBP).

The student scanners also recorded the BMI, sex, and age of the student being scanned. Students were not categorized as having present or past, acute or chronic musculoskeletal lumbar or sacral problems, injuries, or anomalies. No prescreening was performed.

Data Analysis
The amount of asymmetry for SBP and SSD between the left and right sides was calculated as the absolute value of the difference between the 2 sides. The distances for SBP and SSD as well as the asymmetry were reported in millimeters as mean (95% CI). General linear mixed models were fit to the data to determine whether each side, BMI category, sex, and age were related to SBP and SSD, where side was a within-participant factor and BMI, sex, and age were between-participant factors. Body mass index was subdivided into normal (18-25) or overweight (26-30). SAS statistical software, version 9.3 (SAS Institute, Inc) was used to analyze the data. P<.05 was considered statistically significant.

Results
Ultrasound images were successfully obtained by 225 first-year osteopathic medical students for the sacral landmarks assignment, and images of 211 students who met the inclusion criteria were used for analysis. The majority of students were men (123 [58%]) and had a normal BMI (131 [62%]). The mean (SD) age of students was 25.5 (2.5) years, with an age range of 21 to 33 years.

The SBP was not significantly different between the left and right sides (P=.95; Table). The mean (95% CI) asymmetry in SBP was 4.2 (3.7-4.6) mm. For SBP, no significant interaction was found between BMI category
and sex ($P=.48$). The SBP was significantly different between BMI categories (mean [95% CI] normal, 33.0 [32.0-34.0] mm; overweight, 40.0 [38.6-41.4] mm; $P<.001$) and between men and women (mean [95% CI] male, 34.1 [33.1-35.1] mm; female, 39.0 [37.6-40.3] mm; $P<.001$). Age was not significantly related to SBP ($P=.46$).

The SSD was not significantly different between the left and right sides ($P=.08$). The mean (95% CI) asymmetry in SSD was 4.1 (3.6-4.6) mm. The interaction of BMI category and sex was not significant ($P=.40$). The SSD was not significantly different between BMI categories ($P=.21$) or between men and women ($P=.24$). Age was not significantly related to SSD ($P=.39$).

Discussion

The current study found statistically significant relationships between SBP and overweight and female students. This finding may reflect that more soft tissue overlays the sacrum in these groups. The clinical relevance of these findings may relate to multiple pain and disability issues, such as sacroiliac joint dysfunction, low back and pelvic-related pain, postural-related disabilities, and autonomic and lymphatic-related problems. Recognizing relationships, spatial orientation, and 3-dimensionality of body landmarks, which is important for identifying somatic dysfunction, is challenging for many students.\(^5\) The novice student often has difficulty palpating bony landmarks and anatomic structures to form a diagnosis of somatic dysfunction because palpatory accuracy is dependent on examiner experience.\(^5\) The measurement of depths of structures using ultrasound imaging provides feedback to students about the accuracy of their perceived measurements.\(^18\) Furthermore, these measurements may be used to obtain normative values for musculoskeletal structures like the sacroiliac joint to identify trends, such as the association between BMI and sacral landmarks.

Although authors\(^19-22\) have described patterns of static landmarks and motion characteristics for the diagnosis of somatic dysfunction of the sacrum differently, most agree that patterns are generated about an oblique axis, vertical axis, horizontal axis, and a proposed anteroposterior axis. The nomenclature and criteria for these axes are specified in the *Glossary of Osteopathic Terminology*.\(^23\) Somatic dysfunctions with an oblique axis and a vertical axis result in asymmetry of the left SBP and SSD compared with the right side.\(^19-21\) Dysfunctions about an axis are termed rotations and torsions, and those about a vertical axis may relate to the left or right posterior margin. Dysfunctions with multiplane asymmetry include the unilateral flexion and extension patterns. Those that occur about the horizontal axis are termed bilateral flexion or bilateral extension. Nicholas and Nicholas\(^21\) used an algorithm method based on the backward bending test and the relative anterior position of the right SBP to the left SBP when determining a diagnosis of somatic dysfunc-
schools have integrated ultrasonography into curricula. Second, no control group was used for comparison because all of the students were required to complete the sacral landmarks assignment. Third, because no interexaminar studies or repeated measurements were performed, we could not describe this dataset as normative data. Last, our only exclusion criteria were age and BMI. We did not group students on the basis of their medical history, and no prescreening was performed. Because of the nature of this feasibility study, in which osteopathic medical students made up the study sample, this limitation was difficult to avoid. The overwhelming majority of students were healthy, and the statistical power needed to infer any conclusions on the basis of an existing or preexisting medical condition would require a much larger sample.

Conclusion

Our study yielded repeatable and reproducible results establishing SBP and SSD using ultrasonography. First-year osteopathic medical students with higher BMI and women had significantly larger SBPs. However, more data from a larger and more diverse population are necessary to confirm the perceived depths and positions of anatomic structures that are critical for the diagnosis of patterns of somatic dysfunction of the sacrum and pelvis. Studies using ultrasound imaging to establish criteria for somatic dysfunction may be beneficial for the treatment of patients presenting with functional problems related to the sacrum and associated structures.

Author Contributions

All authors provided substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; all authors drafted the article or revised it critically for important intellectual content; all authors gave final approval of the version of the article to be published; and all authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Table. Effect of Side, BMI, and Sex on Sacral Base Position and Sacral Sulcus Depth as Measured by Ultrasonography (N=211)

<table>
<thead>
<tr>
<th>Category</th>
<th>n</th>
<th>Sacral Base Position, mm, Mean (95% CI)</th>
<th>Sacral Sulcus Depth, mm, Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>211</td>
<td>36.5 (35.4-37.7)</td>
<td>18.9 (18.0-19.7)</td>
</tr>
<tr>
<td>Right</td>
<td>211</td>
<td>36.5 (35.4-37.6)</td>
<td>19.8 (19.0-20.6)</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>.95</td>
<td>.08</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>131</td>
<td>33.0 (32.0-34.0)</td>
<td>18.9 (18.2-19.6)</td>
</tr>
<tr>
<td>Overweight</td>
<td>80</td>
<td>40.0 (38.6-41.4)</td>
<td>19.7 (18.7-20.7)</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td><.001</td>
<td>.21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>123</td>
<td>34.1 (33.1-35.1)</td>
<td>19.7 (19.0-20.4)</td>
</tr>
<tr>
<td>Female</td>
<td>88</td>
<td>39.0 (37.6-40.3)</td>
<td>19.0 (18.0-19.9)</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td><.001</td>
<td>.24</td>
</tr>
</tbody>
</table>

P value from general linear mixed model comparing categories.

Abbreviation: BMI, body mass index.
References

